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A B S T R A C T

We report the nano-sized CuSO4–carbon nanotube composite (nano-CuSO4/C) as a novel conversion-based
cathode material for Na-ion batteries (NIBs). The nano-CuSO4/C undergoes a conversion reaction during the
charge/discharge process with a high redox potential of ~2.7 V (vs. Naþ/Na) and the highest reported energy
density for NIB cathode materials. Nano-CuSO4/C exhibits excellent electrochemical performance, with a specific
capacity of ~335 mAh g�1 at a rate of C/30 (1C¼ 335mA g�1), and even at 5C, its capacity is maintained up to
~204 mAh g�1, corresponding to ~61% of the theoretical capacity. Furthermore, nano-CuSO4/C delivers
outstanding capacity retention of ~72% over 300 cycles at 2C with high coulombic efficiency of more than 99%.
We confirm the reversible sodium storage mechanism on nano-CuSO4/C under Na-ion battery system using
various analyses, such as operando/ex situ X-ray diffraction, X-ray absorption near edge structure spectroscopy,
extended X-ray absorption fine structure spectroscopy, transmission electron microscopy, and time-of-flight
secondary-ion mass spectroscopy. CuSO4 is transformed into Cu0 and Na2SO4 during the discharge (reduction)
process, and the original CuSO4 is recovered during the charge (oxidation) process. This fundamental under-
standing of CuSO4 provides insight for the use of high-capacity conversion-based cathode materials in NIBs.
1. Introduction

The use of fossil fuels contributes to environmental problems, such as
the greenhouse effect and air pollution; thus, the development of eco-
friendly electric vehicles (EVs) is needed [1–4]. To power EVs, Li-ion
batteries (LIBs) have attracted great attention because of their high en-
ergy density and reasonable cycle life [5–7]. However, the extension of
the application of LIBs from power sources for portable electronic devices
to grid-scale applications has resulted in a shortage of lithium resources
to satisfy the demands of various technologies and industries, thereby
increasing the price of lithium [8–11]. The recent development of
alternative battery systems with lower production cost than LIBs has led
to the introduction of Na-ion batteries (NIBs) [12–15] because of the
abundant Na resources in seawater and their similar reaction mecha-
nisms as LIBs [16–18]. Over the last decade, there have been many works
on intercalation-based cathode materials for NIBs [19–24]. The resulting
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energy densities depend on the crystal structures, such as whether the
environment of sodium ions is octahedral [25] or prismatic [26] with an
oxide [27] or polyanion [28] framework. Nevertheless, even though NIBs
have advantages in terms of production cost, the energy densities of most
reported intercalation-based cathodes for NIBs cannot compete with
those for LIBs [29–37]. Moreover, if we rely on the same energy storage
mechanisms for NIBs as those employed in LIBs, we will not be able to
overcome this lower-energy-density issue.

Herein, we introduce a novel conversion-based cathode material with
high redox potential. Compared with intercalation chemistry, which is
the general mechanism used for sodium storage for cathode materials,
the conversion reaction enables the storage of more sodium [38–41].
However, in general, conversion-based electrode materials exhibit lower
redox potentials than intercalation-based electrode materials [42–44].
Thus, to date, the conversion reaction has been applied to the anode and
not the cathode for LIBs and NIBs. Our strategy to increase the redox
r (J. Kim).
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potential is to maximize the inductive effect by using ions with high
electronegativity. For the intercalation reaction, polyanion-based mate-
rials with P or S have higher operation voltages than normal
transition-metal-oxide materials [45–48]; thus, we anticipate that a
similar effect will be observed in conversion-based cathode materials
with high redox potential through the inductive effect. Furthermore, it
has been known that difference in Gibbs free energy for each conversion
reaction determines the potential cell potential E0 and the equation be-
tween Gibbs free energy and cell potential is as follows;

E0 ¼ � ΔrG0

zF

�
ΔrG0 ¼ΔrH0 �TΔrS0

�
(1)

where △rG0 is the difference of Gibbs free energy per mole between
products and reactants at standard conditions, which is affected by the
reaction enthalpy△rH0; z is the number of moles of electrons transferred
in the reaction; and F is the Faraday constant. Thus, for high operation
voltage, electrode materials should have a large negative value of △rG0.
Cu-based compounds, such as oxide, sulfide and fluoride, have known to
exhibit lower formation energies (or less negative value) than the com-
pounds composed of other transition metal elements such as Fe, Mn and
Co that are generally adopted as cathode materials for NIBs [49,50].
Table S1 presents standard Gibbs free energies/enthalpies of various
transition metal compounds connected with different anions. These
represent that Cu-based compounds can have higher redox potential than
other metal-based compounds.

As a promising conversion-based cathode material for NIBs, we pro-
pose the nano-sized CuSO4 – carbon nanotube composite (nano-CuSO4/
C) electrode with ultra-high energy density for the first time. The specific
capacity delivered ~335 mAh g�1 with a high redox potential of ~2.7 V
(vs. Naþ/Na) at C/30 (1C¼ 335mA g�1), resulting in the highest energy
density of cathode materials for NIBs reported to date. Even at 5C, the
nano-CuSO4/C electrode delivered ~204 mAh g�1, corresponding to
~61% of its theoretical capacity. Furthermore, over 300 cycles at 2C,
charge/discharge capacities of the nano-CuSO4/C electrode were main-
tained up to ~78% of the initial capacity with a high Coulombic effi-
ciency (CE) of more than ~99%. The conversion reaction mechanism of
CuSO4 under Na-ion battery system was confirmed through the various
analyses, such as operando/ex situ X-ray diffraction (XRD), X-ray ab-
sorption near edge structure spectroscopy (XANES), extended X-ray ab-
sorption fine structure spectroscopy (EXAFS), transmission electron
microscopy (TEM) and time-of-flight secondary-ion mass spectroscopy
(ToF-SIMS). The characterization results clearly indicate the occurrence
of the following reversible conversion reaction of CuSO4 during charge/
discharge: CuSO4 þ 2Naþ þ 2e� ↔ Na2SO4 þ Cu.

2. Results and discussion

The preparation process and reaction mechanism for CuSO4 are
illustrated in Fig. 1 After dehydration of CuSO4⋅5H2O by heat treatment
at 500 �C in air, the obtained CuSO4 was intimately blended with
conductive Super P carbon and multiwall carbon nanotubes using plan-
etary ball milling to prepare a nano-sized nano-CuSO4/C composite; this
process enlarges the surface area, leading to a fast conversion reaction
with Na ions. As shown in Fig. S1, it was verified through the thermog-
ravimetric analysis (TGA) that ~20wt% carbon contents exist in the
nano-CuSO4/C composite, which means that the nano-CuSO4/C com-
posite is composed of ~80wt% CuSO4 and~20wt% conductive carbons.
It was hypothesized that the CuSO4 is converted into metallic Cu0 and
Na2SO4 on discharge, and, during the charge process, these phases are
reversibly recovered to CuSO4, as indicated below:

CuSO4 þ 2Naþ þ 2e� ↔ Cu þ Na2SO4 (2)

Using first-principles calculations, we predicted the theoretical redox
potential for this reaction. The equation used to calculate the voltage
profile of CuSO4 during the conversion reaction is expressed as follows:
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V ¼ � EðCuÞ þ EðNa2SO4Þ � EðCuSO4Þ � 2EðNaÞ
2F

(3)
where V is the average redox potential for the conversion reaction of
CuSO4, E is the formation energy of each component based on density
functional theory (DFT), and F is the Faraday constant. The formation
energies of each component are tabulated in Table S2. Despite the con-
version reaction, it is surprising that the predicted redox potential of
CuSO4 is ~2.7 V (vs. Naþ/Na), which is the highest reported operation
voltage among conversion-based electrode materials for NIBs to the best
of our knowledge. The predicted theoretical capacity of CuSO4 under the
conversion reaction is ~335 mAh g�1.

The crystal structure of nano-CuSO4/C was verified using XRD with
Rietveld refinement. As shown in Fig. 2, phase-pure nano-CuSO4/C was
synthesized, and its XRD pattern can be indexed to the Pnma space group.
The calculated lattice parameters were a¼ 8.3991(17) Å, b¼ 6.6996(8)
Å, c¼ 4.8249(10) Å, and β¼ 90�, which are consistent with the previ-
ously reported values [51]. Fig. S2 compares the crystal structure and
morphology of the as-prepared CuSO4 and nano-CuSO4/C, revealing a
decrease in the particle size but no change in the crystal structure.
Moreover, we calculated the crystallite size of CuSO4 phase in the
nano-CuSO4/C composite using Scherrer equation (Table S3). It was
verified that the average crystallite size of CuSO4 phase is ~14.51 nm,
which indicates that the CuSO4 nanocrystals were well prepared through
the high-energy ball-milling process. This modification is likely to
improve the interfacial reaction kinetics via the shortened diffusion path
[52–54]. In addition, it was reported that the long ion diffusion length
and large band-gap of the conversion-based electrode materials result in
their poor ionic/electronic conductivity, which is considered as the
major drawbacks that prevent the implementation of the theoretical ca-
pacity of the conversion-based electrode materials [50,55]. Interestingly,
it was verified through the electrochemical tests that the nano-CuSO4/C
composite delivered the theoretical capacity of CuSO4 at the mild con-
dition. We supposed that the nano-sizing and the carbon-mixing using
high-energy ball milling enable the implementation of the theoretical
capacity of CuSO4. The nano-sizing of CuSO4 through high-energy
ball-milling can provide shorten ion diffusion path. The diffusion time
(τ) can be represented as the following equation:

τ¼ LNa
2 /DNa (4)

where LNa is the diffusion length of Na ions and DNa is the diffusion co-
efficient of Na ions. According to the equation, the diffusion time is
decreased as square of diffusion length, which indicates that shortened
diffusion length can result in the facile Na ionic diffusion and the
significantly improved electrochemical performance of CuSO4. More-
over, the homogeneous carbon-mixing of CuSO4 through high-energy
ball-milling can significantly improve the electronic conductivity of
CuSO4, thus, it can enhance the electrochemical performances of active
material via effective diffusion of not only e� but also Naþ. In addition,
poor electrochemical performances of the pristine CuSO4 electrode in-
dicates that without the nano-sizing and the carbon-mixing using high-
energy ball milling, it is difficult at the mild condition to implement
the theoretical capacity of CuSO4.

To confirm the predicted high redox potential of CuSO4, we measured
the electrochemical performances of the nano-CuSO4/C composite elec-
trode in Na cells. Fig. 3a shows that the nano-CuSO4/C exhibited the
average operation voltage of ~2.7 V (vs. Naþ/Na), which is higher than
the other conversion-based electrode for NIBs. The specific capacities of
the nano-CuSO4/C composite measured under different currents ranging
from C/30 to 5C (1C¼~335 mAh g�1) indicate that the nano-CuSO4/C
composite delivered acceptable power for a NIB (Fig. 3b). The specific
discharge capacity of the nano-CuSO4/C composite at C/30 was com-
parable to the theoretical capacity of CuSO4 (~335 mAh g�1 with two-
electron transfer as indicated in Eq. (2)). It is surprising that even at
5C, its discharge/charge capacities were maintained up to ~204 mAh
g�1 with a high CE of over 99%. We also measured the electrochemical
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properties of pristine CuSO4 without nano-sizing (Fig. S3). Even though
the mass ratio of CuSO4, carbon and binder contents in the pristine
CuSO4 electrode were same as that in the nano-CuSO4/C electrode, Un-
like the nano-CuSO4/C composite, the pristine CuSO4 delivered poor
specific capacities even at the low current rate of C/30, which indicates
the importance of nano-sizing and conductive carbon matrix to enhance
the electrochemical performances of CuSO4. Furthermore, over 300 cy-
cles measured at 2C, the nano-CuSO4/C composite delivered the capacity
retention of ~78% compared to its initial capacity and the CE was more
than 99% (Fig. 3c and Fig. S4). These results indicate the outstanding
cyclability of the nano-CuSO4/C composite as the promising cathode for
NIBs. The capacities calculated at the basis of the scale of the nano-
CuSO4/C composite are shown in Fig. S5. Moreover, to verify the ca-
pacity contribution of ball-milled carbons, we prepared the nano-ZnSO4/
C composite. All preparation processes of the nano-ZnSO4/C composite
were same as those of the nano-CuSO4/C composite, such as the 20 wt%
carbon contents and the high-energy ball-milling processes. As shown in
Fig. S6, unlike the nano-CuSO4/C electrode, the nano-ZnSO4/C electrode
exhibited poor electrochemical performances, which indicates that the
capacity contribution of ball-milled carbons in the nano-CuSO4/C com-
posite is negligible. In addition, it was verified that, after 300 cycles, any
cracks or structural deformation was hardly observed in the nano-
CuSO4/C electrode (Fig. S7). As shown in Fig. S8, we performed a full cell
test using nano-CuSO4/C with pre-sodiated hard carbon electrodes for 50
cycles at 1C within the voltage range between 1.1 V and 4.0 V. The
fabricated full cell was able to exhibit moderate performances for 50
cycles with ~90% retention of initial capacity, which implies that the
present nano-CuSO4/C can be applicable to the cathode for NIBs.

The structural evolution of the CuSO4 composite electrode was
monitored using operando XRD at the first cycle. The full operando XRD
patterns were presented in Fig. S9. As shown in Fig. 4a, a new peak
appeared at ~43.4� (2θ), which corresponds to the (111) peak of Cu
metal on discharge (reduction) to 1.2 V, and the original CuSO4 phase
became less evident as sodiation progressed. This evolution results from
the conversion process in which CuSO4 was rearranged via decomposi-
tion and formation of metallic Cu0. No other peaks were obvious in the
operando XRD pattern (Fig. 4a) other than the two phases at ~32.5� (2θ)
Fig. 1. Scheme of conversion reaction mechanism of
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(Na2SO4) and ~43.4� (2θ) (metallic Cu0). This finding agrees with our
hypothesis expressed by reaction (2) that the CuSO4 is fully converted via
the predicted conversion reaction. On charge (oxidation), the relative
intensities of the metallic Cu0 and Na2SO4 phases were gradually
diminished, and the CuSO4 phase was somehow restored with low
crystallinity via rearrangement of the crystal structure at the end of
discharge. An additional finding was the appearance of new peaks at
22�–26� (2θ), which is attributed to the formation of Na2SO4. (Fig. S10).
This result validates our hypothesis that the present CuSO4 undergoes a
reversible conversion reaction. The relative intensity of the XRD pattern
for the recovered CuSO4 was not much higher than that of the fresh
electrode, which is associated with the formation of amorphous or low-
crystalline nanosized CuSO4. ToF-SIMS was employed to obtain further
insight into the reaction process of CuSO4 during the conversion process
(Fig. 4b). For the fresh state, there was no indication of a Naþ

(m¼ 22.98) fragment; however, the presence of the CuSO3
þ (m¼ 142.88)

fragment indicated that the resulting compound was composed of
Cu–S–O bonds. At the end of discharge, the strong signal of the CuSO3

þ

fragment was no longer observed, whereas Naþ and NaSO2
� (m¼ 86.95)

fragments appeared. This result indicates that there was no Cu–S–O
bonding in the discharged (reduced) products. The presence of NaSO2

�

supports the idea that the starting CuSO4 was reorganized into Cu and
Na2SO4 via reaction (2). After charge (oxidation) to 3 V, it is worth
highlighting that the CuSO3

þ fragment, observed in the fresh states, was
observed again but that the NaSO2

� fragment was negligible. The pres-
ence of CuSO3

þ fragment is indicative of a reversible conversion reaction,
which restores the original CuSO4 despite the low crystallinity resulting
from the reorganization of the crystal structure by the electrochemical
reaction.

The reaction mechanism of the conversion reaction of CuSO4 in a Na
cell was also identified using XANES and EXAFS analyses. As shown in
Fig. 4c, during initial charging/discharging, the clear variations in the
oxidation states of Cu2þ and metallic Cu0 were verified. Furthermore, the
simultaneous dissociation of the Cu–O bond and the formation of the
metallic Cu–Cu bond during initial discharging was also confirmed by the
Fourier transform (FT) of the EXAFS spectra. We also observed that the
re-charging process of the electrode resulted in re-formation of the Cu–O
nano-CuSO4/C during charge/discharge process.



Fig. 2. Rietveld refinement of XRD pattern and crystal structure of nano-CuSO4/
C composite. (RP¼ 2.24%, RI¼ 1.72%, RF¼ 1.65%, and χ2¼ 1.88%).

Fig. 3. (a) Charge–discharge curves of nano-CuSO4/C obtained at a rate of C/30
(11.2 mA g�1) at 1st, 10th, 30th and 50th cycles, which is compared to the
theoretically predicted average operation voltage in the voltage range of
1.2–4.1 V (vs. Naþ/Na). (b) Power capability of nano-CuSO4/C at various C-
rates. (c) Cyclic performance and Coulombic efficiency of nano-CuSO4/C over
300 cycles at 2C after 1 cycle at C/3.
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bond with disappearance of the Cu–Cu bond (Fig. 4c). TEMwith selected-
area electron diffraction (SAED) analysis also revealed the overall con-
version reaction of CuSO4. As shown in Fig. 5a, the nano-CuSO4/C
composite was composed of small CuSO4 nanocrystals (<10 nm) with
interplanar crystal spacings of 0.42 and 0.26 nm, corresponding to the
(101) and (121) planes of CuSO4, respectively. During discharging, there
were appearance of new nanocrystals with the crystal spacing of Na2SO4
and Cu metal but not for the existing CuSO4 nanocrystals (Fig. 5b).
Interestingly, CuSO4 nanocrystals were reformed during charging
(Fig. 5c), which is consistent with the XRD, ToF-SIMS, XANES, and
EXAFS data shown in Fig. 4.

The idea behind the current work is to increase the redox potential
using the induction effect of polyanions. As designed, the theoretical
calculations and experiments demonstrated that the present nano-
CuSO4/C composite electrode exhibited an average operation voltage
approximately 2.7 V vs. Naþ/Na and underwent a reversible conversion
reaction by forming Na2SO4 as a conversion byproduct on reduction with
subsequent oxidation restoring the original structure though showing
low crystallinity. Through this reaction, the delivered capacity was
retained for long-term cycling (~72% for 300 cycles), and the electrode
performances were comparable or exceeded those of intercalation cath-
ode materials for NIBs. Here, we present the conversion chemistry based
on S–O bonding, and extension of the induction effect using different
types of polyanions will be applied in future work to develop new con-
version cathode materials that can provide high redox potential. We
compared the electrochemical performances of cathode materials for
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NIBs reported to date (Fig. 6a), clearly presenting the outstanding
properties of the nano-CuSO4/C composite. In particular, we compared
the power-capability, energy density, average potential of discharge, and
cyclability of the nano-CuSO4/C with those of the cathode materials with
high specific capacity of more than 180 mAh g�1 (Fig. 6b and Table S4)
[30,36,37,56–64], which highlights outstanding electrochemical per-
formances of the present nano-CuSO4/C as the promising cathode for
NIBs.

3. Conclusions

We propose a new conversion-based cathodematerial, nano-CuSO4/C
composite, with a high energy density (specific capacity of 335 mAh g�1

with an average redox potential of ~2.7 V (vs. Naþ/Na)) and acceptable
long-term cycling performance among reported cathode materials for
NIBs. Unlike general conversion-based electrode materials, the nano-
CuSO4/C composite exhibits the high average operation voltage derived
from the induction effect, which is verified by combined studies using
first-principles calculations and experiments: CuSO4 þ 2Naþ þ 2e� ↔ Cu
þ Na2SO4. We believe that our concept, which relies on the polyanion-
induced high redox potential, will provide significant insight for the
development of high-energy cathode materials for NIBs.
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4. Experimental

4.1. Material preparation

The crystalline CuSO4 powders were prepared by heating CuSO4*5
H2O (Sigma Aldrich, 98%) at 500 �C for 5 h in air. After dehydration, the
powders were whitish-gray. The CuSO4 was mixed with carbon using
Fig. 4. (a) Operando XRD patterns of nano-CuSO4/C electrode during the first cycle.
Cu K-edge XANES and EXAFS spectra of nano-CuSO4/C samples.
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high-energy ball milling of 80wt% CuSO4 and 20wt% Super P carbon
black. The powders were placed into a nitride jar with thirty balls and
ball milled at 500 rpm for 15 h.
4.2. Material characterization

The coated powders were characterized using XRD (PANalytical)
(b) ToF-SIMS graphs of nano-CuSO4/C samples during charge and discharge. (c)
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using Cu Kα radiation (wavelength¼ 1.54178 Å). The 2θ range was
10�–60� with a time per step of 0.13. The FullProf Rietveld program was
used to analyze the measured XRD data. The morphology of the materials
was examined using SEM (SU-8010) and FESEM (JEM-2100F). XANES
spectroscopy was performed on beamline 8D at the 3.0-GeV Pohang Light
Source.
Fig. 5. HRTEM images and SAED patterns of (a) OCV, (b
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4.3. Electrochemical properties

The electrodes were fabricated from a slurry of 87.5 wt% nano-
CuSO4/C composite, 2.5 wt% Super-P carbon, and 10wt% poly-
vinylidene fluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP),
which indicates that the nano-CuSO4/C electrode consisted of 70 wt%
) discharged, (c) charged nano-CuSO4/C composite.



Fig. 6. (a) Comparison of electrochemical performances among the cathode materials for NIBs up to now. (b) Comparison of Ragone plot on the nano-CuSO4/C and
reported cathode materials with high specific capacity (>180 mAh g�1).
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CuSO4 as the active material, 20wt% conductive carbons and 10wt%
PVDF binder. For fair comparison of electrochemical performances be-
tween the nano-CuSO4/C electrode and the pristine CuSO4 electrode, we
applied the same mass ratio of 70 wt% CuSO4, 20wt% conductive car-
bons and 10wt% PVDF binder for preparation of s the nano-CuSO4/C
electrode and the pristine CuSO4 electrode. The slurry was applied on Al
foil using a doctor blade and dried in an oven for 12 h. R2032 cells were
assembled in an argon-filled glove box using the CuSO4 composite
electrode, a Na counter electrode, a glass fiber separator, and 1M NaPF6
in EC:DMC:FEC (49:49:2 v/v%) as the electrolyte. The electrochemical
performances of the cells were measured by charging and discharging in
the voltage range of 1.2–4.1 V at 30 �C.

4.4. Computational details

Density functional theory (DFT) calculations were performed using
464
the Vienna Ab initio Simulation Package (VASP) [65]. We used
projector-augmented wave (PAW) pseudo potentials [66] with a
plane-wave basis set, as implemented in VASP. Per-
dew�Burke�Ernzerhof (PBE) parametrization of the generalized
gradient approximation (GGA) was used for the exchange-correlation
function [67,68]. All the calculations were performed with an energy
cutoff of 520 eV until the remaining force in the system converged to less
than 0.05 eV Å�1 per unit cell. The detailed parameters reported at the
Materials Project [69], such as U values and energy-cutoff etc., were used
for this DFT calculation.
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